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Abstract
Individuals with schizophrenia can have marked deficits in goal-directed decision making. Prominent theories differ in 
whether schizophrenia (SZ) affects the ability to exert cognitive control or the motivation to exert control. An alternative 
explanation is that schizophrenia negatively impacts the formation of cognitive maps, the internal representations of the 
way the world is structured, necessary for the formation of effective action plans. That is, deficits in decision-making could 
arise when goal-directed control and motivation are intact but used to plan over ill-formed maps. We tested the hypothesis 
that individuals with SZ are impaired in constructing cognitive maps. We combine a behavioral representational similarity 
analysis technique with a sequential decision-making task. This enables us to examine how relationships between choice 
options change when individuals with SZ and healthy age-matched controls build a cognitive map of the task structure. Our 
results indicate that SZ affects how people represent the structure of the task, focusing more on simpler visual features and 
less on abstract, higher-order, planning-relevant features. At the same time, we find that individuals with SZ were able to 
display similar performance on this task compared with controls, emphasizing the need for a distinction between cognitive 
map formation and changes in goal-directed control in understanding cognitive deficits in schizophrenia.

Keywords  Schizophrenia · Reinforcement learning · Cognitive maps

Introduction

Impairments in goal-directed behavior are a critical aspect 
of schizophrenia (Barch & Dowd, 2010; Cooper et al., 2019; 
Culbreth et al., 2016a, 2016b; Liemburg et al., 2015). These 
impairments become prevalent before the onset of psychosis, 
stabilize afterwards (Green, 1996; Sheffield et al., 2018), and 
are resistant to treatment even when other symptoms are ame-
liorated (Green, 2016; Tripathi et al., 2018). Moreover, they 
predict long-term and daily life outcomes (Cowman et al., 
2021; Kring & Barch, 2014), such as a reduced lifespan and a 
higher likelihood of homelessness (Ayano et al., 2019). Under-
standing how schizophrenia affects goal-directed behavior is a 
critical step towards developing more effective diagnosis and 

treatment. However, the mechanistic underpinnings of these 
impairments remain poorly understood.

Most previous research has explained these deficits in 
goal-directed behavior as resulting from a reduced capac-
ity for cognitive control (Barch et al., 2018). For example, 
Cohen and Servan-Schreiber (1993) argued that disturbances 
of dopaminergic function reduce the quality of information 
processing in the prefrontal cortex, an area of the brain 
critical for cognitive control (Miller & Cohen, 2001). This 
may lead to a global reduction in the ability of patients to 
perform the computations needed to plan goals (Culbreth 
et al., 2016a, 2016b; Knolle et al., 2023). This might occur 
through a reduced ability to manipulate information in work-
ing memory (Kim et al., 2004), to maintain relevant infor-
mation (Thakkar & Park, 2012; Gotra et al., 2022), or to 
suppress distraction (Lesh et al., 2011; Reilly et al., 2008). 
Another line of research argues that deficits in goal-direct 
control instead arise from perturbed estimations of mental 
effort demands (Gold et al., 2012, 2015), potentially driven 
by abnormal dopaminergic functioning (Westbrook et al., 
2021). Under this explanation, reduced goal-directed control 
in schizophrenia reflects a decision to withhold mental effort 
(Cooper et al., 2019; Culbreth et al., 2016a, 2016b) rather 
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than an inability to apply it. In short, both theories focus on 
how a decrease in implemented control produces cognitive 
deficits in schizophrenia, only differing in whether capacity 
or perceived incentive is the source of disruption.

However, deficits in goal-directed behavior can also arise 
if one exerts appropriate control over ill-formed represen-
tations of the world (Feher da Silva & Hare, 2020; Feher 
da Silva et al., 2023). Representations of the world are key 
to effective goal-directed decision-making as they provide 
maps of how different actions lead to varying outcomes. 
If individuals with schizophrenia are not able to generate 
accurate representations of the world, goal-directed deci-
sion-making impairments would manifest even if individu-
als with SZ were motivated and able to expend effort on a 
given task. That is, as long as internal models, or cognitive 
maps (Tolman, 1948), inaccurately reflect the structure of 
the world, any good faith attempt to plan or reason over them 
will result in performance deficits. Thus, deficits in goal-
directed control in schizophrenia may occur because patients 
have difficulty constructing models of the environment.

Some preliminary evidence suggests that schizophrenia 
interferes with the ability to construct appropriate internal rep-
resentations of task structure. For example, individuals with 
schizophrenia often fail to integrate intrinsically linked char-
acteristics of choice options (Cooper et al., 2019; Morris et al., 
2018), need to be explicitly pointed to task structure to perceive 
differences in effort demands between choice options (Gold 
et al., 2015), and show blunted internal error monitoring signals 
(Kirschner & Klein, 2022). Individuals with schizophrenia are 
also impaired at combining previously learned associations to 
form new inferences (Armstrong et al., 2012, 2018), navigat-
ing complex virtual environments (Weniger & Irle, 2008), and 
updating internal representations of dynamically changing task 
rules (Everett et al., 2001; Morris et al., 2018; Waltz & Gold, 
2007). Many of these deficits center on relational processing 
(Einstein & Hunt, 1980; Halford et al., 2010), which underlies a 
host of cognitive abilities ranging from decision-making (Holy-
oak & Monti 2021) to episodic memory functions mediated by 
the hippocampus (Davachi, 2006; Shimamura, 2011; Whitting-
ton et al., 2022). Importantly, the hippocampus is thought to be 
critical for the formation of cognitive maps of the world around 
us (Behrens et al., 2018; O’Keefe & Nadel, 1978).

This set of findings about cognitive impairments has led 
to the recently proposed “shallow cognitive map” hypothesis 
of schizophrenia. This hypothesis claims that these relational 
deficits stem from disorganization in hippocampal circu-
ity, leading to disorganized thought (Musa et al., 2022). If 
mechanisms, such as those in the hippocampus underlying 
the formation of cognitive maps (O’Keefe & Nadel, 1978; 
Whittington et al., 2022), are disrupted in schizophrenia, 
then many deficits in schizophrenia, including goal-directed 
decision making, may be a consequence of poorly built inter-
nal representations of the world. However, this hypothesis 

has not been directly tested, especially in contexts in which 
people need to use goal-directed control to plan over their 
internal representations of a task’s structure.

We test this hypothesis by leveraging a recent formali-
zation of goal-directed control in terms of “model-based” 
reinforcement learning (RL) (Sutton & Barto, 2018). Model-
based decision-makers search through their internal rep-
resentation of the environment to find the lines of action 
that produce the maximal cumulative reward. This form of 
decision making is often contrasted with “model-free” RL, 
which simply updates the value of actions that lead to reward 
without considering the structure of the task (Daw et al., 
2005; Kool, Cushman, & Gershman, 2017; Drummond & 
Niv, 2020). It has been argued that human behavior reflects 
a weighted mixture of these two strategies. This RL frame-
work of goal-directed behavior provides a computationally 
explicit distinction between control and the representations 
over which control is applied. The latter is a function that 
links actions to consequences (a cognitive map), whereas 
the former is an algorithm that uses this function to search 
for rewards.

We have recently developed a novel behavioral approach 
that measures people’s subjective representation of a task 
structure that they need to navigate to earn rewards (Karagoz 
et al., 2024). At the heart of this approach lies a variant of 
a class of sequential decision-making tasks, called two-step 
tasks, which dissociate model-based from model-free con-
trol (Daw et al., 2011; Kool et al., 2016). This paradigm is 
paired with a behavioral representational similarity analysis 
(behRSA) approach (Karagoz et al., 2024; Walsh & Riss-
man, 2023; Kriegeskorte et al., 2008). We developed this 
analysis to use simple similarity judgments between objects 
encountered in the task to assess how participants represent 
the structure of the task (inspired by neural variants of this 
same analysis; Kriegeskorte et al., 2008). Importantly, this 
approach allows us to decompose participants’ cognitive 
maps into three increasingly complex components that rep-
resent distinct forms of structure in the two-step task. These 
components range from representing structure that is irrel-
evant to task performance to the most complex higher-order 
structure that is beneficial for planning. In our previous work 
(Karagoz et al., 2024), we found that participants whose 
cognitive maps better aligned with higher-order structure in 
the task tended to use more model-based control and per-
formed better overall. Based on the shallow cognitive map 
hypothesis, we predicted that schizophrenia patients would 
construct mental representations of the task that overweight 
simple surface-level features and underweigh the more com-
plex higher-order relationships that are relevant for planning.

In order to test for motivational deficits in goal-directed 
control implementation, we included a “stakes” manipula-
tion in this task, so that on certain trials the earned reward 
would be multiplied. This manipulation temporarily 
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amplifies the benefit of model-based control and results in 
a phasic increase in its use in conventional research popula-
tions (Kool et al., 2017; Karagoz et al., 2024; Patzelt et al., 
2019). This shift has been argued to result from a cost–ben-
efit tradeoff that pits the computational costs of planning 
against its increased accuracy (Kool & Botvinick, 2018; 
Kool et al., 2017). Even though schizophrenia appears not 
to affect reward processing (Abler et al., 2008; Heerey et al., 
2008), it should still affect sensitivity to amplification of 
rewards if effort costs are higher (Barch et al., 2023; Cooper 
et al., 2019; Kring & Barch, 2014; Reddy et al., 2015; Tread-
way et al., 2015). For instance, SZ patients might still inte-
grate reward values but consistently deem the cost of effort 
not worth the increase in reward. The stakes manipulation 
allowed us to test this hypothesis.

By combining a manipulation to motivate use of goal-
directed control as well as our behRSA approach to meas-
ure task representations, we assessed both deficits in goal-
directed control as well as ill-formed cognitive maps in 
schizophrenia. Our results provide novel evidence for the 
shallow cognitive map hypothesis of schizophrenia. The 
cognitive maps of patients tended to focus on features of 
the task that are not relevant to planning but are perceptually 
salient, whereas controls reported higher similarity for some 
higher-order planning-relevant features. Interestingly, in this 
simple version of the two-step task, we found that patients 
and controls performed approximately equally well to one 
another. Taken together, this provides important evidence 
that model-based control and cognitive map construction 
are separable constructs and that internal models of task 
structure are indeed disrupted in patients with schizophrenia. 
Finally, we found that patients were not sensitive to moti-
vational manipulations, providing additional evidence that 
schizophrenia affects the motivation to exert goal-directed 
control.

Methods

Participants

We recruited 20 people with schizophrenia/schizoaffective 
disorder (SZ) and 24 control participants (CN) to participate 
in the study. Exclusion criteria included 1) DSM-5 diagnosis 
of substance abuse or dependence in the past 6 months; 2) 
IQ less than 70 as measured by the Wechsler Test of Adult 
Reading (Wechsler, 2001); and 3) history of severe head 
trauma and/or loss of consciousness. Additional exclusion 
criteria for patient group included inpatient or partial hos-
pital status. Additional criteria for controls included 1) no 
personal or immediate relative with a history of schizophre-
nia, schizoaffective disorder, and 2) no current or past major 
depression. Finally, we also excluded participants based on 
failing to respond to more than 20% of trials in the decision-
making task (a single control participant). All participants 
provided written informed consent to the protocol approved 
by the Washington University Institutional Review Board. 
Demographics for all groups are presented in Table 1. There 
were no group differences in age, sex, or parental education, 
although as is typical, the individuals with schizophrenia had 
significantly lower personal education.

Diagnostic and symptom assessment

Diagnostic status was confirmed by using the Structured 
Clinical Interview for DSM-5 conducted by masters or 
Ph.D.-level clinicians. Clinician-rated negative symptoms 
were assessed in all patient groups by using the Clinical 
Assessment Interview for Negative Symptoms (CAINS) 
(Kring et  al., 2013), which includes a Motivation and 
Pleasure (MAP) and Expression (EXP) subscale. General 

Table 1   Participant demographic characteristics (p values are uncorrected)

Healthy Controls 
(N = 23)

Healthy Controls 
(N = 23)

Individuals with 
Schizophrenia (N = 20)

Individuals with 
Schizophrenia 
(N = 20)

Mean SD Mean SD p value
Demographics
Age (years) 38.85 8.91 42.82 9.98 0.18
Sex (% male) 52.17% 55.0%
Personal Education (years) 15.30 2.70 13.35 2.81 0.03
Parental education (years) 13.15 2.80 14.14 3.03 0.29
Self-report
Snaith-Hamilton Pleasure Scale 12.26 1.96 10.45 3.00 0.03
Motivation and Pleasure Scale 38.48 10.67 31.65 13.06 0.07
Neurocognitive measures
Wechsler test of adult reading 103.43 8.84 102.10 13.57 0.71
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psychiatric symptoms were assessed using the Brief Psychi-
atric Rating Scale (BPRS) (Overall & Gorham, 1962), which 
includes a subscale of psychotic symptoms and depression. 
Participants completed the Motivation and Pleasure Scale 
(MAP-SR; Llerena et al., 2013); higher scores corresponded 
to increased motivation and pleasure across the week. Par-
ticipants also completed the Snaith-Hamilton Pleasure Scale 
to assess hedonic capacity with higher scores corresponding 
to increased capacity (Snaith et al., 1995). Depression was 
assessed by using the Center for Epidemiological Studies 
Depression Scale (CES-D) (Radloff, 1977).

Decision‑making task

The decision-making task was designed to dissociate 
between model-free and model-based decisions in a setting 
where participants need to learn about the structure of the 
task and was based on a recently developed “two-stage” 
sequential decision-making task (Karagoz et al., 2024; Kool 
et al., 2017).

Each trial of the task started randomly in one of two first-
stage states. Each of these states offered a choice between 
a unique pair of “teleporters,” presented side-by-side. Par-
ticipants used the “F” key on their keyboard to choose the 
left teleporter and the “J” key to choose the right teleporter. 
This choice determined which one of two second-stage states 
would be encountered. For each pair, one of the teleport-
ers deterministically led to a purple second-stage state, and 
the other deterministically led to a red second-stage state. 
Importantly, each teleporter always led to the same second-
stage state (Fig. 1A). This is in contrast to another variant of 
this task where actions in the first-stage state sometimes lead 
to rare transitions (Culbreth et al., 2016a, 2016b; Daw et al., 
2011). Previous work has shown that in the current variant, 
the use of model-based control leads to increased reward, 
whereas the other variant does not (Kool et al., 2016).

Each second-stage state contained a unique “generator” 
that was associated with a scalar reward. Participants were 
instructed to press the spacebar key to interact with the 
generator so that it provided them with “space treasure,” 
and they were told that the fuel rods used by the generators 
would sometimes yield more or less space treasure. The pay-
offs of the generators changed over the course of the experi-
ment according to independent random walks. Their reward 
distributions were initialized randomly for each participant 
within a range of 0 to 9 points and then varied according to 
a Gaussian random walk ( � = 2) with reflecting bounds at 
0 and 9.

The six objects were randomly assigned as teleporters and 
generators for each participant separately.

This task distinguishes between model-based and model-
free strategies since only a model-based decision maker 
generalizes experiences from one starting state to all other 

starting states; that is, after receiving a high reward in a sec-
ond-stage state, a model-based learner can use their knowl-
edge of the transition structure to plan their way back to that 
same second-stage state. A model-free agent, on the other 
hand, learns through action-reward associations and will 
only become more likely to choose that same action in the 
same first-stage state, not transferring experiences from one 
first-stage state to the others (Kool et al., 2016). If we imag-
ine a trial starting in the desert first-stage state that leads to 
a better-than-expected reward in the red second-stage state, 
a purely model-free agent will not use this information if 
the next trial starts in the forest first-stage state. The com-
putational model, described below, uses RL to capture this 
distinction in a single model-based weighting parameter.

To introduce differing incentives for model-based control, 
we introduced a “stakes” manipulation in this task (Kool 
et al., 2017). At the start of each trial, an incentive stake cue 
indicated by how much the reward obtained at the end of the 
trial would be multiplied. On some trials, this cue indicated 
that the points would be multiplied by 5 (high stakes). On 
other trials, the cue indicated that the points would be multi-
plied by 1 (low stakes). For example, if a participant earned 
5 space treasure pieces on a high-stakes trial, the multiplier 
would result in a total of 25 points. On a low-stakes trial with 
the same amount of space treasure, the participant would 
earn 5 points. The chance of a high-stakes trial was equiva-
lent for both first-stage states. On each trial, there was a 50% 
chance that a trial would be a high-stakes trial and a 50% 
chance it would be a low-stakes trial.

At the start of each trial, participants saw the first-stage 
background and the stake multiplier for 1 s. Then, the stake 
moved to the top left corner and the teleporters were pre-
sented. Participants were given a time limit of 3 s to choose 
between them. After their response, the selected option was 
highlighted, and the nonselected option was greyed out for 
the remainder of the response period. There was a 500-ms 
interval between the end of the first stage response period 
and the onset of the second stage. Following a 200-ms inter-
val after the generator was selected, the space that treasure 
pieces produced by the generator were displayed at the top of 
the screen for 1.5 s. Each piece was individually converted to 
a point value (100 ms for each), and then the points for that 
trial were multiplied by the stake before being added to the 
score in the top-right. There was a 500-ms intertrial inter-
val (ITI). Participants completed 200 trials with an optional 
short break in the middle.

Behavioral representational similarity task

To test how task experience affects structure learning, we 
used a behavioral representational analysis technique pre-
viously described by Karagoz & colleagues (2024). In this 
task, participants provided relatedness ratings of pairs of 
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novel 3D objects that were also used as choice options in 
the decision-making task (adapted with permission from 
Hsu et al., 2014; Schlichting & Preston, 2015). On each 
trial, they were shown two of the objects experienced in 
the task horizontally centered in the screen (image sizes of 
400 × 400 pixels). At the top of the screen the prompt read, 
“In terms of the task, how related are these two objects?” 
Below the images, participants were shown a “slider” bar 
and were asked to use the mouse to move the slider to their 
perceived level of “relatedness” between the two objects 
they had just seen (Fig. 1C). Participants had unlimited 
time to respond, with a 1-s interstimulus interval between 

submission and the next relatedness trial. Participants per-
formed pairwise ratings of all six objects in both left and 
right positions, resulting in 30 trials.

We have used this approach in previous work (Karagoz 
et al., 2024), where we have shown that participants’ relat-
edness ratings reveal their assessment of task structure. 
For example, a participant may think that a first-stage tel-
eporter and the second-stage reward generator it leads to, 
are related, whereas the same teleporter is not related to 
the generator on the other second-stage state. As we detail 
below, our analytic method allows us to quantify these 
correspondences using a priori components.

Fig. 1   A. Task transition structure. Two distinct first-stage each 
contain two unique choice objects. Each of these objects determin-
istically leads to one of two second-stage states, as depicted by the 
colored arrows. These first-stage states were associated with dif-
ferent amounts of reward that changed across the task. B. Possible 
relationships between items that can be inferred from task experi-
ence. First, items that appear together can become more subjectively 
related (co-occurrence). Second, items that form an action outcome 
pair can become more subjectively related (direct). Third, items that 

share a goal state can become more subjectively related (indirect). C. 
Example trial from the decision-making task, participants initial see 
the point multiplier before being able to make their decision between 
the two objects in the first stage state. D. Example trials from the 
relatedness task. Participants see a pair of objects they experienced 
in the context of the decision-making task and are asked to move 
a slider to indicate the degree of relatedness. E. Portion of a hypo-
thetical matrix of similarity ratings generated from the behRSA task. 
behRSA = behavioral representational similarity analysis
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Working memory task

Participants completed a Running Span task to assess work-
ing memory. Letters were presented on a computer screen 
one at a time, spaced 2 s apart. During a trial, an unpredict-
able number of letters was presented, and participants were 
asked to remember a varying number of the last letters from 
the list. The task began with participants recalling the last 
letter presented and progressed in difficulty in each succes-
sive block of four trials. Participants had to complete two 
of four trials correctly to move on to the next block. The 
dependent measure was the total number of correct letters 
recalled in the correct order across all trials.

Procedure

Participants completed one visit to the laboratory as part of 
a larger study examining motivation and cognition. Partici-
pants completed a diagnostic interview followed by tasks 
assessing RL, working memory, and questionnaires assess-
ing symptom domains as described above. Participants were 
compensated $40 for their time and for any task bonus they 
received (5 points converted to 1 cent, maximum of $10).

Analysis

Performance   We computed average performance on the 
decision-making task as the average number of points 
earned per trial. To correct for baseline differences in avail-
able reward (as a result of the random Gaussian walks), we 
then subtracted the average available reward across both 
second-stage states (Kool et al., 2016). We also computed 
the average performance based on the stake effects. For this, 
we took the difference between participant performance in 
high-stakes vs low-stakes trials to indicate a measure of 
motivational modulation of performance.

RL model   We adapted an established hybrid RL model that 
we used in prior work to assess participants’ behavior in 
the decision-making task, specifically dissociating model-
free and model-based decision making (Bolenz et al., 2019; 
Karagoz et al., 2024; Kool et al., 2016). Full details of the 
model and fitting procedure are discussed in the Supplemen-
tary Materials.

The model contains two separate systems that make deci-
sions in computationally distinct ways. The model-free 
system learns the values of individual actions through trial 
and error. After each action, it computes a prediction error, 
which is simply the difference between the current value 
(both future and immediate reward) and the reward expecta-
tion. It then uses a temporal difference-learning algorithm 
(Sutton & Barto, 2018) to increase values for actions that 

lead to positive prediction errors and to decrease values for 
actions that lead to negative prediction errors. When mak-
ing decisions in the first-stage states, the model-free system 
uses the values it has learned for the available actions. The 
model-based system, on the other hand, uses its internal 
model of the task’s transition structure to plan toward the 
second-stage model-free values to plan its first-stage actions. 
Thus, in contrast to the model-free system, the model-based 
system does not use the first-stage model-free values. 
Because both second-stage states can be reached from both 
first-stage states, this means that the model-based system 
is not influenced by the particular sequence of first-stage 
states it encounters. The model-free system, however, can-
not transfer experiences between first-stage states, and so it 
can only use reward information from the previous trial if it 
involves the same first-stage state.

These two learning systems are combined using a weight-
ing parameter (w) bounded between 0 and 1, where 0 is fully 
model-free control and 1 is fully model-based. The com-
bined system then made choices using a stochastic choice 
rule (soft-max), using an inverse-temperature parameter (β) 
that governs the explore/exploit tradeoff. The model also 
included a learning-rate (ɑ) that determines the degree to 
which prediction errors update existing action values. It 
also included an eligibility trace parameter (λ) that controls 
how the outcome at the second-stage informs the first-stage. 
Specifically, the eligibility trace multiplicatively weights the 
amount that the second-stage reward updates the first-stage 
values. Finally, π and ρ capture perseveration on either stim-
ulus choice or response. The stimulus choice perseveration 
acts as an additive value for the stimulus that was previously 
selected in the same first-stage state. The response perse-
veration parameter acts as an additive value for the specific 
keypress corresponding to a choice.

We used maximum a posteriori estimation to fit this dual-
system RL model to behavior on this task, using empirical 
priors previously reported by Bolenz et al. (2019). The aver-
age fit per group for each of these parameters is reported in 
Table 2. We note that we were able to recover the primary 
parameters of interest (Supplement: Parameter recovery). 
We were unable to recover the parameter for response sticki-
ness, however this is a general nuisance parameter that is 
not related to task performance. We emphasize that we suc-
cessfully recovered the primary parameters of interest (the 
w parameters for high and low stake trials) as well as oth-
ers that inform specific aspects of task performance (e.g., 
learning rate and inverse temperature). The results of this 
parameter recovery analysis follow those previously reported 
in this literature (Bolenz et al., 2019; Kool et al., 2016).

Behavioral representational similarity analysis   We used 
participants’ relatedness ratings of objects to measure the 
structure of their cognitive maps (Figs. 1C-D). Based on our 
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previous work with this variant of the task, we hypothesized 
that experience with the decision-making task would yield 
participants to represent the task structure across three dif-
ferent levels of abstraction (Karagoz et al., 2024). These 
levels of abstraction map onto the possible relationships 
highlighted in Fig. 1B. We call the first level of abstraction 
“visual co-occurrence,” which corresponds to the relatedness 
between items observed in the same first-stage state. Even 
though this relationship between items is valid, it does not 
aid goal-directed control. The second “direct association” is 
defined as the relationship between a first-stage transporter 
and the second-stage generator, and the third highest-order 
“indirect association” is the relationship between two first-
stage teleporters that share the same goal. Although these 
differ in terms of level of abstraction, both these compo-
nents are relevant for planning. Using the direct associations 
allows participants to infer the consequence of a first-stage 
action, whereas the indirect associations allow them to infer 
that two items that both lead to the same second-stage state 
are functionally equivalent. To test this hypothesis, we com-
pared their matrices of relatedness ratings to three a priori 
model matrices, which reflected these levels of representa-
tion of the decision-making task structure. This was done 
by using a multiple regression approach where the flattened 
vector of similarity ratings provided by participants was the 
dependent variable. Each of the a priori model matrices was 
also flattened and modeled as an independent variable. The 
final regression formula was as follows:

This formulation allowed us to analyze the participant simi-
larity matrix as a weighted average of the different planning 

Participant Similarity Matrix = �0 + �1 × Visual Co-occurrence Model Matrix

+ �2 × Direct Item Model Matrix

+ �3 × Indirect Item Model Matrix

relevant and irrelevant features in the task. We used these beta 
values as further regressors to see if the amount of reported 
similarity along one of our a priori features predicted either 
performance or the use of model-based control.

Hierarchical linear mixed effects model (behRSA). We 
modeled the relationship between the inferred task structure, 
clinical group, and the degree of complexity of task struc-
ture features using a hierarchical linear mixed-effects model. 
Specifically, we modeled the estimated regression coefficients 
described in the previous section as a function of categorical 
regressor that encoded clinical group (patient vs. control) and 
an ordinal regressor that encoded the complexity of the com-
ponent (co-occurrence = − 1, direct = 0, indirect = 1), while 
including random intercepts for each participant.

Linear model for effect of self‑report data on w  We modeled 
the relationship between use of model-based control, clinical 
group, and the self-report scores from both the Snaith-Ham-
ilton Pleasure Scale and the Motivation and Pleasure Scale 
(MAP-SR) using a linear model. Before incorporating the 
raw scores into the model, we first z-scored each self-report 
measure within-group. These values were then used in the 
linear model with a binary indicator of clinical group with 
control coded as 0 and SZ patient as 1.

Statistical approach   In our statistical analyses, we relied on 
two-tailed tests wherever prior research did not inform a pre-
dicted direction of the effect. We used one-tailed tests when 
previous results from our group allowed us to make direc-
tional predictions about effects. When running independent 
samples t-tests between our groups we use Welch’s tests.

Results

Differences in task behavior

Inconsistent with previous research on schizophrenia and 
model-based control, we found that the patients performed 
the task in a qualitatively similar way to controls.

Patients and controls did not differ in terms of chance-cor-
rected reward rate t(30.91) = −0.28, d = 0.09, p = 0.779 ) 
(Fig. 2A). One intuitive hypothesis for this finding is that 
patients spent more time on first-stage choices, but we 
found no group difference in first-stage response times 
(  t(38.16) = −1.04, d = 0.32, p = 0.304  ) .  We  a l s o 
assessed to which degree patients and controls failed to 
respond on a trial. Numerically, the control group showed 
a smaller average percentage of missed trials (mean % 
missed = 0.04 in controls and 0.06 in patients), but this dif-
ference between group nonresponses was not significant 
( t(30.23) = −1.30, d = 0.41, p = 0.203).

The computational model fits provided consist-
ent results. In contrast to previous findings (Culbreth 

Table 2   Reinforcement learning model parameter estimates

None of the parameters differ significantly between the two groups 
although there is a trending effect of better model fits in the patient 
group. (p values are uncorrected)

Healthy 
Controls 
(N = 23)

Healthy 
Controls 
(N = 23)

Individuals with 
Schizophrenia 
(N = 20)

Individu-
als with 
Schizophrenia 
(N = 20)

Mean SD Mean SD p-value

LL  − 116.30 21.84  − 104.80 16.55 0.06
α 0.69 0.22 0.60 0.27 0.26
β 1.58 1.10 1.62 1.12 0.87
λ 0.58 0.09 0.60 0.18 0.86
ρ  − 0.09 0.29  − 0.06 0.40 0.80
π 0.25 0.60 0.56 0.78 0.16
w 0.52 0.16 0.48 0.16 0.13
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et  al., 2016a, 2016b), we saw no difference in the 
model-based control parameter between the two groups 
( t(38.55) = −1.55, d = 0.48, p = 0.129 ) (Fig.  2B). One 
interesting possibility is that this is driven by the fact that 
increased use of model-based control in our task leads to an 
increased payoff (Kool et al., 2016), whereas the original 
version of this (Daw et al., 2011) used in previous work 
(Culbreth et al., 2016a, 2016b) does not. Another explana-
tion is that model-based control in this task is less demand-
ing, because it does not require reasoning over probabilis-
tic transitions (unlike the original version). In short, these 

results suggest that patients were able and willing to engage 
in control over goal-directed behavior.

Next, we turned our attention to the incentive manipu-
lation. Prior work has shown that people increase model-
based control when higher reward is available (Bolenz 
et al., 2019; Karagoz et al., 2024; Kool et al., 2017). In 
our study, we found that in healthy controls an increase 
in points earned in the high-stake trials compared with 
the low-stake trials ( t(22) = 2.29, d = 0.48, p = 0.032 ), 
but patients showed no such sensitivity to the stake 
m a n i p u l a t i o n  (  t(19) = 0.09, d = 0.02, p = 0.926  ) 

Fig. 2   Differences in task performance. A. Baseline adjusted points 
earned during the task. B. Model-based control parameter w C. Dif-
ferences in points earned by stake condition. D. Differences in model-

based control by stake condition. (* indicates p < 0.05, error bars are 
standard error of the mean)
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(Fig. 2C). More specifically, patients had similar means 
in both stake conditions ( μhigh = 0.263, μlow = 0.256 ), 
whereas controls differed in mean points by stakes 
( �high = 0.344,�low = 0.101 ) (Fig. S2). We find trend-
ing, but not significant, evidence for difference by group 
( t(37.66) = 1.84, d = 0.55, p = 0.07 ). The computational 
modeling fits were consistent with this pattern of behav-
ior. For controls, we saw an effect of stake on model-
based control with higher stakes resulting in higher 
model-based control ( t(22) = 2.57, d = 0.54, p = 0.017 ), 
bu t  we  d id  not  see  th i s  e f fec t  in  pa t ien ts 
( t(19) = 1.21, d = 0.27, p = 0.242 ) (Fig. 2D). Again, the 
test between clinical groups does not reveal a significant 
difference ( t(39.96) = 1.27, d = 0.38, p = 0.210).

Differences in cognitive maps

To test the shallow cognitive map hypothesis of schiz-
ophrenia, we analyzed the data from the behRSA task. 
In previous work, this task allowed us to characterize 
participants’ cognitive maps across three independent 
components, increasing in complexity. We found that the 
more complex components predicted task performance 
(Fig. 1B, direct and indirect item associations) (Karagoz 
et al., 2024). We used this approach to assess whether 
patients and controls differ in the way they construct cog-
nitive maps.

To do so, we ran a hierarchical linear mixed-effects 
with participants’ model matrix coefficients as the 
dependent variable and both clinical group (patients 
vs. controls) and the complexity of the component (co-
occurrence = − 1, direct = 0, indirect = 1) as regressors. 
There was no significant main effect of clinical group 
(� = 6.40,CI95% = [−3.1,15.9], p = 0.18) or component 
complexity (� = −1.9,CI95% = [−13.3,9.5], p = 0.74) . 
However,  there  was a  s ignif icant  in teract ion 
between clinical group and component complexity 
(� = −14.6,95%CI = [−28.6,−0.7], p = 0.039) , indicat-
ing that cognitive maps of schizophrenia patients under-
weighted the more abstract and complex features of the 
task structure (Fig. 3).

After investigating these group differences of the 
principal measures of our tasks, we turned our attention 
towards individual differences. We first focus our analy-
ses on individual differences in model-based control, and 
then report a set of analyses that explore individual dif-
ference in cognitive map formation.

Individual differences in model‑based control

Basic effects. The two-step decision-making task that we 
used in this study was designed in such a way that increased 

model-based control produces increased rewards. Indeed, 
previous work using variants of this task have confirmed this 
through robust correlations between the degree of model-
based control, as measured by the w parameter, and points 
earned in the task (Bolenz et al., 2019; Karagoz et al., 2024; 
Kool et al., 2016).

In our control sample, we replicate this relationship 
( r(21) = 0.55, 95% CI [0.18, 0.79],

p = 0.006 ) (Fig.  4A in blue). Interestingly, we do 
not find a significant correlation between patient use 
of model-based control and reward gained in the task 
( r(18) = 0.08, 95% CI = [−0.38, 0.5], p = 0.741 ) (Fig. 4A 
in orange). It should be noted however, that the correla-
tions are not significantly different from one another when 
directly compared (Williams z-test = 1.63, p = 0.103 ). 
One potential explanation for this difference is that patient 
choice was more exploratory or random, but we found 
no difference in the inverse-temperature parameter ( � ) 
between groups (Table 2). We also examined whether dif-
ferences in the explore/exploit tradeoff (as indicated by 
� ) accounted for the difference in correlations between 
model-based control and performance. However, we found 
no evidence that controlling for individual variation in the 
inverse-temperature parameter uncovered a relationship 
between w and points earned for patients (Supplementary 
Table 1).

Importantly, other key RL parameters from our 
model fits predicted performance in both groups. For 
example, differences in the inverse temperature posi-
tively predicted points earned in both the control group, 
( r(21) = 0.70, 95% CI = [0.40, 0.86], p < 0.001 ), and the 
patients, ( r(18) = 0.55, 95% CI = [0.14, 0.8], p = 0.012 ). 
Analogously, individual differences in the learning rate 
parameter predicted performance in the control group 
( r(21) = 0.63, 95% CI = [0.29, 0.83], p = 0.001 ), and in 
patients ( r(18) = 0.63, 95% CI = [0.26, 0.84], p = 0.003 ). 
These results confirmed the general predictive validity of 
our RL modeling approach.

Effect of stakes incentives  Next, we examined the cor-
relations between the benefits of heightened control 
and increased performance in the high-stakes con-
text. In the control group, we found that the degree 
to which control was heightened on high-stakes tri-
als positively predicted the degree of increased perfor-
mance ( r(21) = 0.59, CI 95% = [0.23, 0.8], p = 0.003 ). 
Meanwhi le ,  in  the  pat ient  g roup we found 
no  such  benef i t  o f  modula t ion  o f  con t ro l 
(   r(18) = 0.30, 95% CI = [−0.17, 0.66], p = 0.200   ) 
(Fig. 4B). Though these correlations did not differ between 
groups when compared directly (Williams z-test = 1.12, 
p = 0.265).
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Working memory    Next, we investigated correlations 
between task-related variables and the working memory 
scores that we measured with the Running Span task. It 
is important to note that due to missing data from a con-
trol participant, the working memory results have 22 con-
trols and 20 individuals with schizophrenia. In line with 
previous work (Culbreth et al., 2016a, 2016b; Otto et al., 
2013), we found a significant relationship between use of 
model-based control and working memory in healthy con-
t ro l s  (  r(21) = 0.51, 95% CI = [0.11, 0.77], p = 0.015) , 
but we found no such correlation for patients’ 

(   r(18) = −0.29, 95% CI = [−0.65, 0.18], p = 0.219) 
(Fig. 4C). We also found a significant difference between 
these correlations by group (Williams z-test = 2.61, 
p = 0.009 ). We also assessed whether working memory 
capacity was coupled with the increase of model-based 
control on high-stakes trials, but we found no relationship 
between modulation of control and working memory in con-
trols (r(21) = 0.16, 95% CI = [−0.28, 0.54], p = 0.489) or 
patients ( r(18) = 0.06, 95% CI = [−0.39, 0.49], p = 0.801) 
(Fig. 4D). We also, did not find any significant difference 
between these two correlations (Williams z-test = 0.306, 

Fig. 3   Differences in cognitive map building. A. Behavioral repre-
sentational similarity analysis approach. Participants’ post-task judg-
ments of relatedness are turned into a pairwise similarity matrix. The 
lower triangle of this matrix is then compared to three model matri-
ces corresponding to three hypotheses about features participants 
may use in their mental representation. B. Patients show a heightened 
sensitivity to visual co-occurrence, rating it quantitatively higher 

than control participants. The two groups show approximately equal 
weighting of direct associations that link first-stage items to their 
second-stage counterparts. Patients seem to not use the indirect asso-
ciation between the two first-stage items that lead to the same sec-
ond-stage item. Controls report this feature in keeping with previous 
work. (Error bars are standard error of the mean; ⦻ indicates a sig-
nificant interaction between group and fit across model matrices.)
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p = 0.760 ). As noted in the Basic Effects section above, 
we found no relationship between model-based control 
and reward earned in patients. We examined whether this 
lack of relationship in patients relative to controls could be 
explained by differences in working memory capacity. Mod-
eling Running Span as a covariate in a group-wise regression 
analysis, we found that working memory differences did not 
explain the decoupling of model-based control from reward 
in patients (see Supplemental Materials, Table S7).

Self‑report measures of negative symptoms

We also assessed correlations between the use of model-
based control and measures of motivation and pleas-
ure-seeking as well as hedonic capacity. We found that, 
within both groups, hedonic capacity as measured by 
the Snaith-Hamilton Pleasure Scale and motivation 
as measured by MAP-SR were positively correlated 
(  r(41) = 0.33, 95% CI = [0.03, 0.57], p = 0.033  ) .  T o 
assess how these self-reported measures interact with use 

Fig. 4   Correlations between model-based control and performance. 
A. Controls, but not patients, show a strong correlation between 
model-based control and task performance. B. The amount to which 
control participants increase their model-based control in high-stakes 
contexts is correlated with increased performance in those contexts. 

This relationship is absent in patients. C. Working memory corre-
lates strongly with model-based control in healthy controls, but not 
in patients. D. Working memory does not predict increases in model-
based control in response to the stakes manipulation
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of model-based control, we ran a linear model predict-
ing the effect of each along with interactions with clini-
cal group. Our measure of hedonic capacity did not pre-
dict the use of model-based control in healthy controls 
( � = 0.057,95%CI = [−0.063, 0.176], p = 0.342 ). In pre-
vious work, Culbreth and colleagues (2016b) found a posi-
tive relationship between an estimate of model-free control 
and hedonic response. Here, we replicated this finding. In 
our model, where lower w values indicate more model-
free control, we found that use of model-free control was 
again correlated with higher hedonic capacity (but only in 
patients). More specifically, we found a negative relation-
ship between hedonic capacity and model-based control in 
patients (� = −1.62, 95%CI = [−0.314,−0.010], p = 0.037 ). 
Motivation and pleasure-seeking scores did not 
predict model-based control in healthy controls 
(   � = −0.079,95%CI = [−0.181, 0.022], p = 0.123   ) . 
We observed a trending interaction where moti-
vation and pleasure-seeking predict a relative 
increase in use of model-based control in patients 
(  � = 0.126,95%CI = [−0.017, 0.269], p = 0.082  ) .  We 
further ran models assessing how self-report measures pre-
dicted other features of our task, such as modulation of con-
trol, these are reported in the Supplemental Results: MAP-
SR and Snaith-Hamilton section.

Individual differences in cognitive map formation

In our previous work, we found that participants who had 
stronger representations of the direct item and indirect item 
associations showed increased task performance (Karagoz 
et al., 2024). These ratings were also predictive of use of 
model-based control in the task. Both effects were used pre-
viously to demonstrate that behRSA reflect task structure.

Even though our current sample size was consider-
ably smaller than in our previous study, we found modest 
evidence that these effects replicate. Due to our previous 
results, we ran one-tailed tests here for positive correla-
tions. In controls, we found a correlation between task 
performance and the strength of the direct item asso-
ciat ions (  r(21) = 0.40, 95% CI [0.05, 1.0], p = 0.030  ) , 
but we found no such effect for indirect item associa-
t i o n s  (  r(21) = 0.18, 95% CI [−0.18, 1.0], p = 0.206  ) . 
In patients, representation of the direct item asso-
ciation showed no relationship with task perfor-
mance ( r(18) = 0.18, 95% CI [−0.28, 0.58], p = 0.437 ), 
n e i t h e r  d i d  t h e  i n d i r e c t  i t e m  a s s o c i a t i o n 
( r(18) = 0.14, 95% CI [−0.32, 0.55], p = 0.544 ). We next 
assessed whether components of the behRSA were associ-
ated with differences in the use of model-based control. 
In the present data, we found no indication in either our 
controls or patients that model-based control was coupled 

with behRSA components. Because our sample size was 
limited by the patients, this lack of effect is potentially 
caused by being underpowered.

Correlation of cognitive map components and stake 
effects   Because we saw differences in control modulation 
of w between high- and low-stakes conditions, we ran a 
model to examine whether modulation of control was pre-
dicted by the presence of different associations in participant 
model matrices. That model did not account for any variance 
in the data (Supplement: w modulation by behRSA).

We then ran a model to test whether differences 
in earned points were predicted by the participants’ 
behavioral representations. We found that there was a 
difference in the degree to which direct item associa-
tions predicted the modulation of reward by stakes. In 
the healthy controls, there was a positive relationship 
between the presence of direct item associations and 
the degree to which more points were earned in higher-
stakes  (  � = 0.009,95%CI = [0.003,0.015], p = 0.005 ) . 
Meanwhile, we observed an interaction indicat-
ing that this relationship is not present in patients 
(  � = −0.015,95%CI = [−0.015,−0.004], p = 0.01 ) .  We 
confirmed this by rerunning the model with patients as 
the reference group and found no evidence of the rela-
tionship between direct item associations and points 
( � = −0.006,95%CI = [−0.015, 0.003], p = 0.215). Inter-
estingly, we found a trending opposite effect in the more 
abstract indirect item association. These results indicate 
major differences in the way control participants and 
patients represented components of the task, and how 
these representations were used to guide behavior. In 
particular, patients’ representations of direct associations 
from the task do not assist them in modulating their effort 
to increase reward (full results of the model are displayed 
in Table 3).

Table 3   Differences in performance between the stake manipulation 
as predicted by behRSA fits

Estimate SE p value Sig

Intercept 0.165 0.102 0.115
Visual 0.006 0.005 0.218
Direct 0.009 0.003 0.005 **
Indirect  − 0.006 0.003 0.056
Group  − 0.151 0.158 0.347
Visual:Group  − 0.002 0.006 0.746
Direct:Group  − 0.015 0.005 0.01 **
Indirect:Group 0.01 0.004 0.035 *
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General discussion

Patients with schizophrenia often show marked deficits in 
goal-direct behavior (Barch & Dowd, 2010). These deficits 
are typically understood as an inability or a reduced will-
ingness to exert control (Barch et al., 2018; Culbreth et al., 
2016a, 2016b; Knolle et al., 2023). We report evidence 
that suggests that such deficits may also arise because of a 
reduced ability to construct representations of the environ-
ment. Making use of a novel behavioral representational 
similarity approach, we found that patients construct cog-
nitive maps of a decision-making task that favor simpler, 
easily inferable, relationships and that undervalue higher-
order ones that are more relevant to planning. Interest-
ingly, these simpler and less optimal cognitive maps in 
patients did not lead to a reduction in goal-directed con-
trol. While this may seem surprising at first, we found 
that the cognitive maps of patients reliably represented 
simpler planning-relevant relationships between actions 
and subsequent states (direct item associations), which are 
enough to optimally perform the task. This dissociation 
provides unique evidence for the idea that schizophrenia 
affects map formation independently of impairments in the 
implementation of control. In line with previous work, we 
also found that patients are unable or unwilling to modu-
late their degree of effort in exchange for increased payoffs 
(Gold et al., 2012; Cooper et al., 2019). Together, these 
results indicate that deficits in goal-directed control in 
schizophrenia are multifaceted, emphasizing the need for 
precise behavioral and computational tools to distinguish 
between multiple contributions.

Our framework is an example of this approach. Specifi-
cally, it allows for simultaneous measurement of model-
based control and the representations that such control is 
exerted over (Karagoz et al., 2024). As noted above, we 
found relatively intact model-based control, but a dete-
rioration of more complex representations of task struc-
ture. These findings are consistent with and provide novel 
evidence for the recent shallow cognitive map hypothesis 
of schizophrenia (Musa et al., 2022). This theory posits 
that dysfunction of the hippocampus in patients results in 
a shallowing of “attractors,” stable states of activity that 
represent distinct components of memory representations. 
This shallowing, or instability, of attractors would then 
cause spurious associations between various features of 
cognitive maps. In our case, these spurious associations 
could underlie a key observation in the patients’ behav-
ior. Namely, their tendency to regard items that simply 
occurred together in the task as being highly related, even 
though such items in fact led to opposite outcomes. Relat-
edly, one could hypothesize that this shallowing of cogni-
tive maps is more likely to affect higher-order relationships 

that rely on relationships across multiple pairs of stimuli. 
In future work, our novel approach can be combined with 
neuroimaging to measure the change more directly in hip-
pocampal representations posited by the shallow cognitive 
maps hypothesis, and with computational modeling using 
neural networks to formalize how schizophrenia affects the 
encoding of structural information (Sučević & Schapiro, 
2023).

Previous work from our group has reported reductions 
in model-based control in individuals with schizophrenia 
compared with healthy controls (Culbreth et al., 2016a, 
2016b). While we find that model-based control is quanti-
tatively lower in patients, this difference was not significant 
in the present data. Several important factors may explain 
this difference. First, in contrast with the task used by Cul-
breth et al., (2016a, 2016b; Daw et al., 2011), the two-step 
task reported here is designed to reward model-based con-
trol (Kool et al., 2016). Therefore, individuals with schizo-
phrenia may have been more motivated to use model-based 
control. Second, goal-directed control may simply be less 
demanding in our task, because it does not require partici-
pants to reason over stochastic transitions. Indeed, young 
children show hints of model-based control on a similar 
variant of this simpler task but not on the more complicated 
original version (Smid et al., 2023). In sum, individuals 
with schizophrenia might have less difficulty exerting con-
trol here than in the task used by Culbreth et al., (2016a, 
2016b). Thus, the current two-step task provides an excel-
lent tool for studies of goal-directed control in schizophre-
nia. Moreover, our findings introduce the possibility that 
reductions in model-based control found by Culbreth et al., 
(2016a, 2016b) are driven by ill-formed cognitive maps. 
This hypothesis could be tested using our behRSA approach 
(Karagoz et al., 2024).

This interpretation of our data is complicated by the 
surprising finding that patients did not show a correlation 
between the degree to which they exert model-based con-
trol and the rewards they earn in the task. This is particu-
larly striking, because we have reported such correlations 
in previous work (Kool et al., 2017; Patzelt et al., 2019; 
Bolenz et al., 2019; Karagoz et al., 2024), and we also 
find this correlation in the control group. Several intuitive 
explanations for this dissociation come to mind. Perhaps 
participants behaved more randomly or learned less about 
the task, and this reduces the impact of the model-based 
control parameter on decision making. However, we find no 
discernable differences between groups in performance on 
the task. Potentially, the patients in our study are relying on 
a choice strategy that is not well captured by our RL model. 
For example, it has recently been suggested that people may 
rely on “successor representations” when solving RL tasks 
(Momennejad et al., 2017). These are cached representations 
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of expected future transitions from a given state (i.e., which 
states typically follow the current one) and stand in contrast 
with cognitive maps that contain the full transition struc-
ture. This form of RL is computationally distinct from the 
representations used by model-free and model-based choice 
strategies. It should be noted that in the case of the successor 
representation as well as our model-based RL framework, 
the statistical learning processes that underlie the forma-
tion of the representations are thought to be fairly automatic 
(Turk-Browne et al., 2005; Schapiro et al., 2013; Whitting-
ton et al., 2022). Our finding that patients encoded the direct 
association (linking previous and future states), but not the 
indirect one (linking first-stage states), provides preliminary 
evidence for this hypothesis. Investigations that allow for 
the measurement of a less dichotomous set of RL strategies 
(Collins & Cockburn, 2020) may provide a better insight 
into this puzzle.

The tradeoff between model-based and model-free con-
trol has been suggested to be governed by a cost–benefit 
analysis (Kool & Botvinick, 2018; Kool et al., 2018). At 
the core of this claim lies a set of studies that demonstrate 
that people exert more model-based control when more 
rewards at stake (Bolenz et al., 2019; Karagoz et al., 2024; 
Kool et al., 2017). We replicate these findings in healthy 
controls, but this motivational modulation of model-based 
control does not seem to occur in patients. This could be 
owing to patient deficits in rapidly integrating the presence 
of the stake cue and using it to shift strategies (Cooper et al., 
2019). Another possibility is that patients may not think that 
the modulation of control is worthwhile. Indeed, previous 
work has shown that they are less sensitive to effort demands 
(Gold et al., 2015). Moreover, previous work has posited 
that anticipatory anhedonia could account for this lack of 
sensitivity (Deserno et al., 2013). Difficulty in anticipating 
future rewards in response to heightened effort may lead 
to patients choosing not to exert enhanced control in the 
high-stakes trials. Regardless of the underlying mechanism, 
these results are consistent with the idea that patients are less 
easily motivated to exert cognitive control (Culbreth et al., 
2016b; Gold et al., 2015).

In our previous work, we found a strong coupling of plan-
ning relevant features in the cognitive map and task perfor-
mance (Karagoz et al., 2024). Our current data partly rep-
licate this finding in a much smaller sample but also reveal 
a decoupling in patients. As before, we find that the plan-
ning-relevant direct item association correlates with general 
performance in healthy controls. However, we also found 
that task representations couple with the modulation differ-
ently in planning in response to the stakes manipulation. In 
control participants, the direct item associations predicted 
increased performance in the high-stakes condition. Indeed, 
if planning is costly, it may be particularly useful to rely on 
the task structure when rewards are temporarily amplified. 

Interestingly, this coupling was not found in patients even 
though they reported a similar amount of direct item asso-
ciation as controls. Note that this result mirrors the lack of a 
correlation between model-based control and performance 
discussed above. This provides further evidence for altered 
representational frameworks in patients and once again 
emphasizes the need for the development of tasks that meas-
ure a range of decision-making strategies.

We found that working memory capacity predicted reli-
ance on model-based control in our control sample (Culbreth 
et al., 2016a). This finding is in line with a set of studies 
that relate cognitive control, RL, and working memory (Col-
lins et al., 2014; Culbreth et al., 2016a; Gillan et al., 2016; 
Otto et al., 2013), which suggest that model-based control 
critically draws on executive functioning capacities imple-
mented by the prefrontal cortex. In the clinical group, how-
ever, this correlation was absent. One possible explanation 
for this difference, apart from the ones mentioned above, is 
that working memory performance was generally lower for 
patients. That is, individual differences may become less 
reliable when people perform poorly on working memory 
tasks. Future, higher-powered replications of this effect will 
be needed to assess these relationships more definitively.

A variety of neural circuits have previously been impli-
cated in deficits in goal-directed behavior in schizophrenia. 
First, there is evidence of general dysfunction in the dorso-
lateral prefrontal cortex (DLPFC; Barch & Ceaser, 2012), 
which may reduce patients’ ability to exert control in pursuit 
of goals. However, previous work that has found DLPFC 
dysfunction in schizophrenia has not separately examined 
the task representations that patients use. Therefore, it could 
be that this apparent dysfunction of DLPFC is instead driven 
by this region attempting to exert control over ill-formed 
maps, leading to patients abandoning these attempts after 
failure. Second, the hippocampal formation is thought to 
be crucial for the construction of cognitive maps (Behrens 
et al., 2018, Boorman et al., 2021). This region is strongly 
impacted by schizophrenia (Tamminga et al., 2010; Yasuda 
et al., 2022), and it communicates with PFC during goal-
directed behavior (Schmidt et al., 2019). It is therefore pos-
sible that our results are driven by the interplay between rep-
resentations in the hippocampal formation and goal-directed 
decision making mediated by DLPFC. Future neuroimaging 
studies can explicitly test this hippocampal-prefrontal rela-
tionship by simultaneously measuring map formation in the 
hippocampus, as well as its interactions with PFC during 
goal-directed behavior.

Our work has several limitations. First, because our data 
were collected as part of a larger initiative (Barch et al., 
2023), we do not have access to patient medication status for 
the specific session in which they engaged in the tasks pre-
sented, and so we are unable to control this. Previous stud-
ies, however, have reported a lack of relationships between 
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RL and medication in schizophrenia (Culbreth et al., 2016a, 
2016b; Geana et al., 2022). Concerning our specific variant 
of the two-step task, patients and controls may have learned 
the transition structure at different rates. However, in previ-
ous work, we have shown incremental learning of the transi-
tion structure these values quickly converge to the true struc-
ture regardless of the learning rate (Karagoz et al., 2024). 
Finally, even though we used a guiding prompt during the 
behRSA task (“In terms of the task, how related do you think 
these objects are?”), it is possible that patients and controls 
interpreted this task differently. Although we cannot rule 
out differences in basic task comprehension, we note that 
all participants were given an opportunity to ask for clarifi-
cation pertaining to instructions as needed. Neuroimaging 
work, which would allow us to measure task representations 
implicitly, would ameliorate this concern.

Conclusions

Our study shows that schizophrenia affects how people con-
struct models of the environment. This may at least partly 
explain deficits in goal-directed control, which have been 
considered a defining feature of the disorder. These results 
provide novel insights into the potential mechanisms under-
lying cognitive deficits in schizophrenia and may inspire 
experimental manipulations that help patients construct bet-
ter cognitive maps, which we predict will lead to increased 
goal-directed control. In turn, this could lead to specific, 
targeted interventions for the treatment of negative symp-
toms in schizophrenia.
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